viernes, 12 de abril de 2019

Teoria de conjuntos, logica matematica y algebra booleana

TEORIA DE CONJUNTOS

La teoría de conjuntos es una rama de la lógica matemática que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.1​
La teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas: números, funciones, figuras geométricas,...; gracias a las herramientas de la lógica, permite estudiar los fundamentos de aquella. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.
Además, la propia teoría de conjuntos es objeto de estudio per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos infinitos. En esta disciplina es habitual que se presenten casos de propiedades indemostrables o contradictorias, como la hipótesis del continuo o la existencia de un cardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica.
El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas «puras» del infinito en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influido por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana de conjuntos, formalizada por Gottlob Frege, propició los trabajos de Bertrand Russell, Ernst Zermelo, Abraham Fraenkel y otros a principios del siglo XX.

LOGICA MATEMATICA

La lógica matemática, también llamada lógica simbólica, lógica teorética, lógica formal o logística,1​ es el estudio matemático de la lógica y su aplicación a otras áreas de la matemática y la ciencia. Comprende la aplicación de las técnicas de la lógica formal a las matemáticas y el razonamiento matemático, y conversamente la aplicación de técnicas matemáticas a la representación y el análisis de la lógica formal. La investigación en lógica matemática ha jugado un papel crucial en el estudio de los fundamentos de las matemáticas.
La lógica matemática estudia la inferencia mediante la construcción de sistemas formales como la lógica proposicional, la lógica de primer orden o la lógica modal. Estos sistemas capturan las características esenciales de las inferencias válidas en los lenguajes naturales, pero al ser estructuras formales susceptibles de análisis matemático, permiten realizar demostraciones rigurosas sobre ellas.
La lógica matemática se suele dividir en cuatro áreas: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la computabilidad. La teoría de la demostración y la teoría de modelos fueron el fundamento de la lógica matemática. La teoría de conjuntos se originó en el estudio del infinito por Georg Cantor y ha sido la fuente de muchos de los temas más desafiantes e importantes de la lógica matemática, a partir del teorema de Cantor, el axioma de elección y la cuestión de la independencia de la hipótesis del continuo, al debate moderno sobre grandes axiomas cardinales. La lógica matemática tiene estrechas conexiones con las ciencias de la computación. La teoría de la computabilidad captura la idea de la computación en términos lógicos y aritméticos. Sus logros más clásicos son la indecidibilidad del Entscheidungsproblem de Alan Turing y su presentación de la tesis de Church-Turing. Hoy en día, la teoría de la computabilidad se ocupa principalmente del problema más refinado de las clases de complejidad (¿cuándo es un problema eficientemente solucionable?) y de la clasificación de los grados de insolubilidad.

ALGEBRA BOOLEANA

Es una rama especial del álgebra que se usa principalmente en electrónica digital. El álgebra booleana fue inventada en el año 1854 por el matemático inglés George Boole.

El álgebra de Boole es un método para simplificar los circuitos lógicos (o a veces llamados circuitos de conmutación lógica) en electrónica digital.

Por lo tanto, también se llama como "Cambio de álgebra". Podemos representar el funcionamiento de los circuitos lógicos utilizando números, siguiendo algunas reglas, que son bien conocidas como "Leyes del álgebra de Boole".

También podemos hacer los cálculos y las operaciones lógicas de los circuitos aún más rápido siguiendo algunos teoremas, que se conocen como "Teoremas del álgebra de Boole". Una función booleana es una función que representa la relación entre la entrada y la salida de un circuito lógico.

La lógica booleana solo permite dos estados del circuito, como True y False. Estos dos estados están representados por 1 y 0, donde 1 representa el estado "Verdadero" y 0 representa el estado "Falso".

Lo más importante para recordar en el álgebra de Boole es que es muy diferente al álgebra matemática regular y sus métodos. Antes de aprender sobre el álgebra de Boole, vamos a contar  un poco sobre la historia del álgebra de Boole y su invención y desarrollo.

Preguntas:

¿Que es un conjunto?
Un conjunto es una colección de elementos con características similares considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él.

¿Qué es un subconjunto?
Conjunto de elementos que tienen las mismas características y que está incluido dentro de otro conjunto más amplio.

¿Qué es el Diagrama de Venn?
Un diagrama de Venn usa círculos que se superponen u otras figuras para ilustrar las relaciones lógicas entre dos o más conjuntos de elementos.

¿Para que se utiliza el Diagrama de Venn?
Se utilizan para organizar cosas de forma gráfica, destacando en qué se parecen y difieren los elementos.

¿En que áreas se utilizan los Diagramas de Venn?
Se usan amplia mente en las áreas de matemática, estadística, lógica, enseñanza, lingüística, informática y negocios.

¿Cuando se creó el Diagrama de Venn?
Los diagramas de Venn fueron ideados hacia 1880 por John Venn.

¿Que es la Ley Distributiva?
En matemáticas y en particular en álgebra abstracta, la distributiva es la propiedad de los operadores binarios que generaliza la propiedad distributiva del álgebra elemental.

¿Qué es la Ley de Morgan?
En lógica proposicional y álgebra de Boole, las leyes de De Morgan​ son un par de reglas de transformación que son ambas reglas de inferencia válidas.

¿Qué es la Diferencia Simétrica?
En teoría de conjuntos, la diferencia simétrica de dos conjuntos es una operación que resulta en otro conjunto cuyos elementos son aquellos que pertenecen a alguno de los conjuntos iniciales, sin pertenecer a ambos a la vez.

¿Cómo se denota la "Diferencia Simétrica" de conjuntos?
La diferencia simétrica de conjuntos se denota por Δ, por lo que P Δ C = D.

DEFINICIONES

 Unión: En las matemáticas, no podemos definir a un conjunto, por ser un concepto primitivo, pero hacemos abstracción y lo pensamos como una colección desordenada de objetos, los objetos de un conjunto pueden ser cualquier cosa siempre que tengan una relación entre ellos, a los objetos de un conjunto se les llama elementos o miembros de dicho conjunto, por lo tanto un conjunto contiene a sus elementos. Se representan con una letra mayúscula y a los elementos o miembros de ese conjunto se les mete entre llaves corchetes o parentesis. ({,}).
Dos conjuntos se pueden combinar de muchas maneras distintas, por ejemplo, teniendo un conjunto de la gente que juega al fútbol y otro de la gente que juega a baloncesto podemos hacer muchas combinaciones como el conjunto de personas que juegan a fútbol o baloncesto, las que juegan a fútbol y baloncesto, las que no juegan a baloncesto, etc.

Intersección: El símbolo del operador de esta operación es: ∩, y es llamado capa.
:Sean A y B dos conjuntos, la coincidencia de ambos (A ∩ B) es el conjunto C el cual contiene los elementos que están en A y que están en B.
Un elemento x pertenece a la coincidencia de los conjuntos A y B si, y sólo si, x pertenece al conjunto A y x pertenece al conjunto B, por lo tanto {\displaystyle A\cap B=\{x/x\in A\land x\in B\}}

Disjuntividad: Se dice que dos conjuntos A y B son disjuntos cuando la coincidencia de ambos es el conjunto vacío. A ∩ B= {\emptyset}
Ejemplos

    Ejemplo: La coincidencia del conjunto de números pares y el conjunto de números impares sería el conjunto C={\emptyset} o sea serían disjuntos.
    Ejemplo: La coincidencia del conjunto de personas que juegan a baloncesto y el conjunto de personas que juegan a fútbol es el conjunto vacío, osea serían disjuntos.
    Ejemplo: La coincidencia de A={3,7,8} y B={1,2,9} sería C={\emptyset}, ya que {3,7,8}∩{1,2,9}={\emptyset} por lo tanto A y B son disjuntos.

Ley de morgan: Teniendo presentes estas definiciones quizás sea entonces mucho más sencillo comprender el sentido de cada una de estas relaciones de Unión e Intersección de conjuntos, que se dan en base al Conjunto complementario, y que pueden ser descritas a su vez de la siguiente forma:
Ley de Morgan con respecto a la Unión
Esta Ley o propiedad matemática, según lo que indican las diferentes fuentes de Álgebra de Conjuntos, señala que siempre y en todo caso, el conjunto complementario de la Unión de dos conjuntos resulta ser equivalente a la intersección que puede ocurrir entre cada uno de los conjuntos complementarios de estos. Igualmente, esta propiedad o Ley de Morgan puede ser expresada matemáticamente de la siguiente forma:

    (A ∪ B)∁ =  A∁ ∩ B∁

Diferencia: El símbolo de esta operación es: \.
La diferencia consiste en eliminar de A todo elemento que esté en B, también se puede denotar con el símbolo de la resta A-B, por lo tanto, la diferencia de los conjuntos A y B es el conjunto C que tiene a todos los elementos que están en A, pero no en B.
También se le puede llamar a la diferencia de A y B: complementario de B con respecto a A.
Por lo tanto, un elemento pertenece a la diferencia de A y B si, y sólo si {\displaystyle \{x/x\in A\land x\not \in B\}}
Ejemplos

    Ejemplo: La diferencia de los conjuntos {1,2,3,4} y {1,3,5,7} es el conjunto {2,4}, sin embargo la diferencia de los conjuntos {1,3,5,7} y {1,2,3,4} es el conjunto {5,7}.
    Ejemplo: La diferencia del conjunto de las personas que juegan al fútbol y el conjunto de las personas que juegan a baloncesto es el conjunto de las personas que solo y exclusivamente juegan al fútbol.


Diferencia simétrica: El símbolo de esta operación es: Δ.
La diferencia simétrica de dos conjuntos A y B es otro conjunto el cual posee los elementos que o bien se encuentran en A, o bien se encuentran en B, pero no en los dos a la vez. A Δ B = C, donde C no tiene

    Ejemplo: La diferencia simétrica del conjunto de personas que juegan a fútbol y el conjunto de personas que juegan a baloncesto es el conjunto de personas que juegan sólo a fútbol y sólo a baloncesto, pero no que jueguen a ambos a la vez.

TEORIA DE CONJUNTOS

 3 conceptos de conjuntos


1.- es lo que esta unido, contiguo o incorporado a otra cosa, o que se encuentra mezclado, combinado o aliado con otra cosa diversa. Un conjunto, por lo tanto, es un agregado de varias cosas o personas.

2.- Un conjunto es una colección de elementos con características similares considerada en sí misma como un objeto.

3.- Es una rama de la lógica matemática que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas.

3 conceptos de subconjuntos


1.-es una rama de la lógica matemática que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas.

2.- Conjunto de elementos que tienen las mismas caracteristicas y que esta incluido dentro de otro conjunto mas amplio.

3.-  Un conjunto S es subconjunto de un conjunto B, si todo elemento del conjunto A es un elemento del conjunto B. La notacion A<B se lee "A es subconjunto de B". la noatacion a B se lee "A no es subconjunto de B".

2 definiciones de teoria de venn

1.- Diagrama consistente en dos o mas areas circulares que representan sendos conjuntos (totalidad de elementos que tienen una caracteristica comun) que se interseccionan y que comparten los subconjuntos representados por las areas comunes.

2.- Usa circulos que se superponen u otras figuras para ilusionar las relaciones logicas entre dos o mas conjuntos de elementos. A menudo, se utilizan para organizar cosas de forma grafica, destacando en que se parecen y difieren los elementos.


3 ejemplos de teoria de venn


1.-  Ponemos 2 bolas en la zona inter, que son los que tiene tanto perros como gatos.
Diagrama de Venn
2.-  Si 5 personas tiene perros, y ya sabemos que 2 tienen tanto perros como gatos, podemos hacer la resta para saber los que tienen perros: a=5-2=3.
Diagrama de Venn
3.-conjunto de multiplos de 5 en el qiue se aisla en su interior, mediante una elipse, a aquellos que son multiplos de 10.
Diapositiva6